DVR3D: for the fully pointwise calculation of ro-vibrational spectra of triatomic molecules

Published: 1 January 1995| Version 1 | DOI: 10.17632/9ftp5rcmsv.1
Contributors:
Jonathan Tennyson, James R. Henderson, Nicholas G. Fulton

Description

Abstract The DVR3D program suite calculates energy levels, wavefunctions, and where appropriate dipole transition moments, for rotating and vibrating triatomic molecules. Potential energy, and where necessary, dipole surfaces must be provided. The programs use an exact (within the Born-Oppenheimer approximation) Hamiltonian, offer a choice of Jacobi or Radau internal coordinates and several body-fixed axes. Rotationally excited states are treated using an efficient two-step algorithm. The programs use... Title of program: ROTLEV3 Catalogue Id: ADAL_v1_0 Nature of problem ROTLEV3 performs the second step in a two-step variational calculation for the bound ro-vibrational levels of a triatomic system represented in either Jacobi or unsymmetrised Radau coordinates [1]. Versions of this program held in the CPC repository in Mendeley Data adal_v1_0; ROTLEV3; 10.1016/0010-4655(94)00139-S adal_v2_0; ROTLEV3; 10.1016/j.cpc.2003.10.003 This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2019)

Files

Categories

Physical Chemistry, Molecular Physics, Computational Physics

Licence