Simulation of n-qubit quantum systems. III. Quantum operations

Published: 1 May 2007| Version 1 | DOI: 10.17632/j6rtnhm7vs.1
T. Radtke, S. Fritzsche


Abstract During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement an... Title of program: FEYNMAN Catalogue Id: ADWE_v3_0 Nature of problem Today, entanglement is identified as the essential resource in virtually all aspects of quantum information theory. In most practical implementations of quantum information protocols, however, decoherence typically limits the lifetime of entanglement. It is therefore necessary and highly desirable to understand the evolution of entanglement in noisy environments. Versions of this program held in the CPC repository in Mendeley Data ADWE_v1_0; FEYNMAN; 10.1016/j.cpc.2005.07.006 ADWE_v2_0; FEYNMAN; 10.1016/j.cpc.2006.03.006 ADWE_v3_0; FEYNMAN; 10.1016/j.cpc.2007.02.106 ADWE_v4_0; FEYNMAN; 10.1016/j.cpc.2008.06.007 This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2019)



Computational Physics, Computational Method