An extension of the Prelle–Singer method and a Maple implementation

Published: 15 March 2002| Version 1 | DOI: 10.17632/b8gjt52j7r.1
L.G.S Duarte, S.E.S Duarte, L.A.C.P da Mota, J.E.F Skea


Abstract The Prelle–Singer method is a semi-decision algorithm which can be used to solve analytically first order ordinary differential equations which have solutions in terms of elementary functions. In this paper we develop an extension to the Prelle–Singer method which deals with first order ordinary differential equations whose solutions lie outside the scope of the standard Prelle–Singer method. We present a software package in Maple V, Release 5 which implements both the Prelle–Singer method in... Title of program: PSsolver Catalogue Id: ADPR_v1_0 Nature of problem Symbolic solution of first order differential equations via the Prelle-Singer method. Versions of this program held in the CPC repository in Mendeley Data ADPR_v1_0; PSsolver; 10.1016/S0010-4655(01)00462-3 ADPR_v2_0; PSsolver; 10.1016/j.cpc.2012.04.012 This program has been imported from the CPC Program Library held at Queen's University Belfast (1969-2019)



Computational Physics, Computational Method